The power of modal separation logics

Author:

Demri Stéphane1,Fervari Raul2

Affiliation:

1. LSV, CNRS, ENS Paris-Saclay, Université Paris-Saclay, Cachan 94235, France

2. CONICET and Universidad Nacional de Córdoba, Córdoba 5000, Argentina

Abstract

Abstract We introduce a modal separation logic MSL whose models are memory states from separation logic and the logical connectives include modal operators as well as separating conjunction and implication from separation logic. With such a combination of operators, some fragments of MSL can be seen as genuine modal logics whereas some others capture standard separation logics, leading to an original language to speak about memory states. We analyse the decidability status and the computational complexity of several fragments of MSL, obtaining surprising results by design of proof methods that take into account the modal and separation features of MSL. For example, the satisfiability problem for the fragment of MSL with $\Diamond $, the difference modality $\langle \neq \rangle $ and separating conjunction $\ast $ is shown Tower-complete whereas the restriction either to $\Diamond $ and $\ast $ or to $\langle \neq \rangle $ and $\ast $ is only NP-complete. We establish that the full logic MSL admits an undecidable satisfiability problem. Furthermore, we investigate variants of MSL with alternative semantics and we build bridges with interval temporal logics and with logics equipped with sabotage operators.

Funder

Laboratoire International Associé INFINIS

Centre National de la Recherche Scientifique

Publisher

Oxford University Press (OUP)

Subject

Logic,Hardware and Architecture,Arts and Humanities (miscellaneous),Software,Theoretical Computer Science

Reference67 articles.

1. Ten Years of Hoare's Logic: A Survey—Part I

2. Moving arrows and four model checking results;Areces,2012

3. Relation-changing modal operators;Areces;Logic Journal of the IGPL,2015

4. Satisfiability for relation-changing logics;Areces;Journal of Logic and Computation,2018

5. Global and local graph modifiers;Aucher;ENTCS,2009

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On Composing Finite Forests with Modal Logics;ACM Transactions on Computational Logic;2023-04-03

2. Modal Logics and Local Quantifiers: A Zoo in the Elementary Hierarchy;Lecture Notes in Computer Science;2022

3. Database Management System Verification with Separation Logics;Programming and Computer Software;2021-12

4. Copy and remove as dynamic operators;Journal of Applied Non-Classical Logics;2021-08-23

5. A Complete Axiomatisation for Quantifier-Free Separation Logic;Logical Methods in Computer Science;2021-08-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3