A Complete Axiomatisation for Quantifier-Free Separation Logic
-
Published:2021-08-10
Issue:
Volume:Volume 17, Issue 3
Page:
-
ISSN:1860-5974
-
Container-title:Logical Methods in Computer Science
-
language:en
-
Short-container-title:
Author:
Demri Stéphane,Lozes Étienne,Mansutti Alessio
Abstract
We present the first complete axiomatisation for quantifier-free separation
logic. The logic is equipped with the standard concrete heaplet semantics and
the proof system has no external feature such as nominals/labels. It is not
possible to rely completely on proof systems for Boolean BI as the concrete
semantics needs to be taken into account. Therefore, we present the first
internal Hilbert-style axiomatisation for quantifier-free separation logic. The
calculus is divided in three parts: the axiomatisation of core formulae where
Boolean combinations of core formulae capture the expressivity of the whole
logic, axioms and inference rules to simulate a bottom-up elimination of
separating connectives, and finally structural axioms and inference rules from
propositional calculus and Boolean BI with the magic wand.
Publisher
Centre pour la Communication Scientifique Directe (CCSD)
Subject
General Computer Science,Theoretical Computer Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献