scREMOTE: Using multimodal single cell data to predict regulatory gene relationships and to build a computational cell reprogramming model

Author:

Tran Andy12ORCID,Yang Pengyi123ORCID,Yang Jean Y H12ORCID,Ormerod John T1

Affiliation:

1. School of Mathematics and Statistics, The University of Sydney, Camperdown NSW 2006, Australia

2. Charles Perkins Centre, The University of Sydney, Camperdown NSW 2006, Australia

3. Children's Medical Research Institute, Westmead NSW 2145, Australia

Abstract

Abstract Cell reprogramming offers a potential treatment to many diseases, by regenerating specialized somatic cells. Despite decades of research, discovering the transcription factors that promote cell reprogramming has largely been accomplished through trial and error, a time-consuming and costly method. A computational model for cell reprogramming, however, could guide the hypothesis formulation and experimental validation, to efficiently utilize time and resources. Current methods often cannot account for the heterogeneity observed in cell reprogramming, or they only make short-term predictions, without modelling the entire reprogramming process. Here, we present scREMOTE, a novel computational model for cell reprogramming that leverages single cell multiomics data, enabling a more holistic view of the regulatory mechanisms at cellular resolution. This is achieved by first identifying the regulatory potential of each transcription factor and gene to uncover regulatory relationships, then a regression model is built to estimate the effect of transcription factor perturbations. We show that scREMOTE successfully predicts the long-term effect of overexpressing two key transcription factors in hair follicle development by capturing higher-order gene regulations. Together, this demonstrates that integrating the multimodal processes governing gene regulation creates a more accurate model for cell reprogramming with significant potential to accelerate research in regenerative medicine.

Funder

Australian Research Council

National Health and Medical Research Council

Publisher

Oxford University Press (OUP)

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3