Data-driven mathematical and visualization approaches for removing rare features for Compositional Data Analysis (CoDA)

Author:

Ortiz-Velez Adrian12,Kelley Scott T12ORCID

Affiliation:

1. Biological and Medical Informatics Program, San Diego State University , San Diego, CA 92182, USA

2. Department of Biology, San Diego State University , San Diego, CA 92182, USA

Abstract

Abstract Sparse feature tables, in which many features are present in very few samples, are common in big biological data (e.g. metagenomics). Ignoring issues of zero-laden datasets can result in biased statistical estimates and decreased power in downstream analyses. Zeros are also a particular issue for compositional data analysis using log-ratios since the log of zero is undefined. Researchers typically deal with this issue by removing low frequency features, but the thresholds for removal differ markedly between studies with little or no justification. Here, we present CurvCut, an unsupervised data-driven approach with human confirmation for rare-feature removal. CurvCut implements two distinct approaches for determining natural breaks in the feature distributions: a method based on curvature analysis borrowed from thermodynamics and the Fisher-Jenks statistical method. Our results show that CurvCut rapidly identifies data-specific breaks in these distributions that can be used as cutoff points for low-frequency feature removal that maximizes feature retention. We show that CurvCut works across different biological data types and rapidly generates clear visual results that allow researchers to confirm and apply feature removal cutoffs to individual datasets.

Publisher

Oxford University Press (OUP)

Subject

Applied Mathematics,Computer Science Applications,Genetics,Molecular Biology,Structural Biology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3