Besca, a single-cell transcriptomics analysis toolkit to accelerate translational research

Author:

Mädler Sophia Clara1,Julien-Laferriere Alice12,Wyss Luis13ORCID,Phan Miroslav13,Sonrel Anthony14,Kang Albert S W1,Ulrich Eric5,Schmucki Roland1,Zhang Jitao David1,Ebeling Martin1,Badi Laura1,Kam-Thong Tony1,Schwalie Petra C1,Hatje Klas1ORCID

Affiliation:

1. Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, Basel, Switzerland

2. Soladis GmbH, Basel, Switzerland

3. Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland

4. Department of Molecular Life Sciences, University of Zürich, Zürich, Switzerland

5. Roche Pharma Research and Early Development, I2O Disease Translational Area, Roche Innovation Center Basel, Basel, Switzerland

Abstract

Abstract Single-cell RNA sequencing (scRNA-seq) revolutionized our understanding of disease biology. The promise it presents to also transform translational research requires highly standardized and robust software workflows. Here, we present the toolkit Besca, which streamlines scRNA-seq analyses and their use to deconvolute bulk RNA-seq data according to current best practices. Beyond a standard workflow covering quality control, filtering, and clustering, two complementary Besca modules, utilizing hierarchical cell signatures and supervised machine learning, automate cell annotation and provide harmonized nomenclatures. Subsequently, the gene expression profiles can be employed to estimate cell type proportions in bulk transcriptomics data. Using multiple, diverse scRNA-seq datasets, some stemming from highly heterogeneous tumor tissue, we show how Besca aids acceleration, interoperability, reusability and interpretability of scRNA-seq data analyses, meeting crucial demands in translational research and beyond.

Funder

F. Hoffmann-La Roche

Publisher

Oxford University Press (OUP)

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3