CIA: a Cluster Independent Annotation method to investigate cell identities in scRNA-seq data

Author:

Ferrari IvanORCID,Battistella MattiaORCID,Vincenti FrancescaORCID,Gobbini AndreaORCID,Notarbartolo SamueleORCID,Costanza JoleORCID,Biffo StefanoORCID,Grifantini RenataORCID,Abrignani SergioORCID,Galeota EugeniaORCID

Abstract

AbstractSingle-cell RNA sequencing (scRNA-seq) has revolutionised our ability to explore the transcriptional landscape of complex tissues and uncover novel cell types and biological functions. However, the task of identifying and classifying cells from scRNA-seq datasets remains a major challenge. To address this issue, we developed a new computational tool called CIA (Cluster Independent Annotation) that can accurately identify cell types across different datasets without the need for a training dataset or complex machine learning processes. Based on predefined cell type signatures, CIA provides a highly user-friendly and practical solution to functional annotation of single cells. Our results demonstrate that CIA outperforms other state-of-the-art approaches, while also having significantly lower computational running times. Overall, CIA simplifies the process of obtaining graphical representations of signature enrichment scores and classification results, providing researchers with a powerful tool to explore the complex transcriptional landscape of single cells.For further details, see tutorials (https://github.com/ingmbioinfo/cia/tree/master/tutorial).

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3