Deep conservation of ribosome stall sites across RNA processing genes

Author:

Chyżyńska Katarzyna1ORCID,Labun Kornel1,Jones Carl12,Grellscheid Sushma N123,Valen Eivind14ORCID

Affiliation:

1. Computational Biology Unit, Department of Informatics, University of Bergen, Bergen 5020, Norway

2. Department of Biological Sciences, Durham University, DH1 3LE, UK

3. Department of Biological Sciences, University of Bergen, Bergen 5020, Norway

4. Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen 5008, Norway

Abstract

Abstract The rate of translation can vary depending on the mRNA template. During the elongation phase the ribosome can transiently pause or permanently stall. A pause can provide the nascent protein with the time to fold or be transported, while stalling can serve as quality control and trigger degradation of aberrant mRNA and peptide. Ribosome profiling has allowed for the genome-wide detection of such pauses and stalls, but due to library-specific biases, these predictions are often unreliable. Here, we take advantage of the deep conservation of protein synthesis machinery, hypothesizing that similar conservation could exist for functionally important locations of ribosome slowdown, here collectively called stall sites. We analyze multiple ribosome profiling datasets from phylogenetically diverse eukaryotes: yeast, fruit fly, zebrafish, mouse and human to identify conserved stall sites. We find thousands of stall sites across multiple species, with the enrichment of proline, glycine and negatively charged amino acids around conserved stalling. Many of the sites are found in RNA processing genes, suggesting that stalling might have a conserved role in RNA metabolism. In summary, our results provide a rich resource for the study of conserved stalling and indicate possible roles of stalling in gene regulation.

Funder

Bergens Forskningsstiftelse

Norges Forskningsråd

Publisher

Oxford University Press (OUP)

Subject

General Medicine

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3