Positive Selection Evidence in Xylose-Related Genes Suggests Methylglyoxal Reductase as a Target for the Improvement of Yeasts’ Fermentation in Industry

Author:

Borelli Guilherme1,Fiamenghi Mateus Bernabe1,dos Santos Leandro Vieira2,Carazzolle Marcelo Falsarella12,Pereira Gonçalo Amarante Guimarães12,José Juliana1

Affiliation:

1. Genomics and bioEnergy Laboratory (LGE), Institute of Biology, Unicamp, São Paulo, Campinas, Brazil

2. Brazilian Bioethanol Science and Technology Laboratory (CTBE), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Sao Paulo, Brazil

Abstract

AbstractXylose assimilation and fermentation are important traits for second generation ethanol production. However, some genomic features associated with this pentose sugar’s metabolism remain unknown in yeasts. Comparative genomics studies have led to important insights in this field, but we are still far from completely understanding endogenous yeasts’ xylose metabolism. In this work, we carried out a deep evolutionary analysis suited for comparative genomics of xylose-consuming yeasts, searching for of positive selection on genes associated with glucose and xylose metabolism in the xylose-fermenters’ clade. Our investigation detected positive selection fingerprints at this clade not only among sequences of important genes for xylose metabolism, such as xylose reductase and xylitol dehydrogenase, but also in genes expected to undergo neutral evolution, such as the glycolytic gene phosphoglycerate mutase. In addition, we present expansion, positive selection marks, and convergence as evidence supporting the hypothesis that natural selection is shaping the evolution of the little studied methylglyoxal reductases. We propose a metabolic model suggesting that selected codons among these proteins caused a putative change in cofactor preference from NADPH to NADH that alleviates cellular redox imbalance. These findings provide a wider look into pentose metabolism of yeasts and add this previously overlooked piece into the intricate puzzle of oxidative imbalance. Although being extensively discussed in evolutionary works the awareness of selection patterns is recent in biotechnology researches, rendering insights to surpass the reached status quo in many of its subareas.

Funder

CAPES—National Council

Improvement of Higher Education, Center for Computational Engineering and Sciences—FAPESP/Cepid

São Paulo Research Foundation

Publisher

Oxford University Press (OUP)

Subject

Genetics,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3