Affiliation:
1. Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
2. Perimeter Institute for Theoretical Physics, Waterloo, Ontario, N2L 2Y5, Canada
Abstract
Abstract
In primary school, we were told that there are four phases of matter: solid, liquid, gas, and plasma. In college, we learned that there are much more than four phases of matter, such as hundreds of crystal phases, liquid crystal phases, ferromagnet, anti-ferromagnet, superfluid, etc. Those phases of matter are so rich, it is amazing that they can be understood systematically by the symmetry breaking theory of Landau. However, there are even more interesting phases of matter that are beyond Landau symmetry breaking theory. In this paper, we review new ‘topological’ phenomena, such as topological degeneracy, that reveal the existence of those new zero-temperature phase—topologically ordered phases. Microscopically, topologically orders are originated from the patterns of long-range entanglement in the ground states. As a truly new type of order and a truly new kind of phenomena, topological order and long-range entanglement require a new language and a new mathematical framework, such as unitary fusion category and modular tensor category to describe them. In this paper, we will describe a simple mathematical framework based on measurable quantities of topological orders (S, T, c) proposed around 1989. The framework allows us to systematically describe all 2+1D bosonic topological orders (i.e. topological orders in local bosonic/spin/qubit systems).
Publisher
Oxford University Press (OUP)
Reference127 articles.
1. Theory of phase transformations I;Landau;Phys Z Sowjetunion,1937
2. On the theory of superconductivity;Ginzburg;Zh Eksp Teor Fiz,1950
3. Axial vector current conservation in weak interactions;Nambu;Phys Rev Lett,1960
4. Field theories with ‘superconductor’ solutions;Goldstone;Nuovo Cimento,1961
Cited by
85 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献