A Human-Specific Schizophrenia Risk Tandem Repeat Affects Alternative Splicing of a Human-Unique Isoform AS3MTd2d3 and Mushroom Dendritic Spine Density

Author:

Cai Xin12,Yang Zhi-Hui12,Li Hui-Juan12,Xiao Xiao1,Li Ming1234ORCID,Chang Hong1

Affiliation:

1. Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China

2. Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China

3. KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China

4. CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China

Abstract

Abstract Recent advances in functional genomics have facilitated the identification of multiple genes and isoforms associated with the genetic risk of schizophrenia, yet the causal variations remain largely unclear. A previous study reported that the schizophrenia risk single-nucleotide polymorphism (SNP) rs7085104 at 10q24.32 was in high linkage disequilibrium (LD) with a human-specific variable number of tandem repeat (VNTR), and both were significantly associated with the brain mRNA expression of a human-unique AS3MTd2d3 isoform in Europeans and African Americans. In this study, we have shown the direct regulation of the AS3MTd2d3 mRNA expression by this VNTR through an in vitro minigene splicing assay, suggesting that it is likely a causative functional variation. Intriguingly, we have further confirmed that the VNTR and rs7085104 are significantly associated with AS3MTd2d3 mRNA expression in brains of Han Chinese donors, and rs7085104 is also associated with risk of schizophrenia in East Asians. Finally, the overexpression of AS3MTd2d3 in cultured primary hippocampal neurons results in significantly reduced densities of mushroom dendritic spines, implicating its potential functional impact. Considering the crucial roles of dendritic spines in neuroplasticity, these results reveal the potential regulatory impact of the schizophrenia risk VNTR on AS3MTd2d3 and provide insights into the underlying biological mechanisms.

Funder

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Psychiatry and Mental health

Reference62 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3