Turtling the Salamander: Tail Movements Mitigate Need for Kinematic Limb Changes during Walking in Tiger Salamanders (Ambystoma tigrinum) with Restricted Lateral Movement

Author:

Vega Christine M1ORCID,Ashley-Ross Miriam A1

Affiliation:

1. Department of Biology, Wake Forest University, 1834 Wake Forest Road, Winston-Salem, NC 27109, USA

Abstract

Synopsis Lateral undulation and trunk flexibility offer performance benefits to maneuverability, stability, and stride length (via speed and distance traveled). These benefits make them key characteristics of the locomotion of tetrapods with sprawling posture, with the exception of turtles. Despite their bony carapace preventing lateral undulations, turtles are able to improve their locomotor performance by increasing stride length via greater limb protraction. The goal of this study was to quantify the effect of reduced lateral flexibility in a generalized sprawling tetrapod, the tiger salamander (Ambystoma tigrinum). We had two potential predictions: (1) either salamanders completely compensate by changing their limb kinematics, or (2) their performance (i.e., speed) will suffer due to the reduced lateral flexibility. This reduction was performed by artificially limiting trunk flexibility by attaching a 2-piece shell around the body between the pectoral and pelvic girdles. Adult tiger salamanders (n = 3; SVL = 9–14.5 cm) walked on a 1-m trackway under three different conditions: unrestricted, flexible shell (Tygon tubing), and rigid shell (PVC tubing). Trials were filmed in a single, dorsal view, and kinematics of entire midline and specific body regions (head, trunk, tail), as well as the fore and hind limbs, were calculated. Tygon individuals had significantly higher curvature than both PVC and unrestricted individuals for the body, but this trend was primarily driven by changes in tail movements. PVC individuals had significantly lower curvature in the trunk region compared with unrestricted individuals or Tygon; however, there was no difference between unrestricted and Tygon individuals suggesting the shells performed as expected. PVC and Tygon individuals had significantly higher curvature in the tails compared with unrestricted individuals. There were no significant differences for any limb kinematic variables among treatments including average, minimum, and maximum angles. Thus, salamanders respond to decreased lateral movement in their trunk by increasing movements in their tail, without changes in limb kinematics. These results suggest that tail undulations may be a more critical component to sprawling-postured tetrapod locomotion than previously recognized.

Funder

Wake Forest University

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Animal Science and Zoology,Ecology, Evolution, Behavior and Systematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3