Applying 3D Models of Giant Salamanders to Explore Form–Function Relationships in Early Digit-Bearing Tetrapods

Author:

Kawano Sandy M1ORCID,Martin Johnson2,Medina Joshua3,Doherty Conor3,Zheng Gary3,Hsiao Emma3,Evans Matthew J4,de Queiroz Kevin5,Pyron R Alexander15ORCID,Huie Jonathan M1ORCID,Lima Riley1,Langan Esther M5,Peters Alan4,Irschick Duncan J3

Affiliation:

1. Department of Biological Sciences, The George Washington University , 2029 G Street NW, Washington, DC 20052 , USA

2. Wilmore https://johnsonlm.com , , KY 40390 , USA

3. Department of Biology, University of Massachusetts at Amherst , Amherst, MA 01003 , USA

4. Smithsonian National Zoo Conservation Biology Institute , 3001 Connecticut Avenue NW, Washington, DC 20008 , USA

5. Division of Amphibians and Reptiles, National Museum of Natural History , 10th Street & Constitution Avenue NW, Washington, DC 20560 , USA

Abstract

Synopsis Extant salamanders are used as modern analogs of early digit-bearing tetrapods due to general similarities in morphology and ecology, but the study species have been primarily terrestrial and relatively smaller when the earliest digit-bearing tetrapods were aquatic and an order of magnitude larger. Thus, we created a 3D computational model of underwater walking in extant Japanese giant salamanders (Andrias japonicus) using 3D photogrammetry and open-access graphics software (Blender) to broaden the range of testable hypotheses about the incipient stages of terrestrial locomotion. Our 3D model and software protocol represent the initial stages of an open-access pipeline that could serve as a “one-stop-shop” for studying locomotor function, from creating 3D models to analyzing the mechanics of locomotor gaits. While other pipelines generally require multiple software programs to accomplish the different steps in creating and analyzing computational models of locomotion, our protocol is built entirely within Blender and fully customizable with its Python scripting so users can devote more time to creating and analyzing models instead of navigating the learning curves of several software programs. The main value of our approach is that key kinematic variables (e.g. speed, stride length, and elbow flexion) can be easily altered on the 3D model, allowing scientists to test hypotheses about locomotor function and conduct manipulative experiments (e.g. lengthening bones) that are difficult to perform in vivo. The accurate 3D meshes (and animations) generated through photogrammetry also provide exciting opportunities to expand the abundance and diversity of 3D digital animals available for researchers, educators, artists, conservation biologists, etc. to maximize societal impacts.

Funder

George Washington University

American Association of University Women

Society for Integrative and Comparative Biology

Company of Biologists

National Science Foundation

Publisher

Oxford University Press (OUP)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3