Establishment of artificial intelligence model for precise histological subtyping of lung adenocarcinoma and its application to quantitative and spatial analysis

Author:

Miura Eisuke1,Emoto Katsura12ORCID,Abe Tokiya3,Hashiguchi Akinori3,Hishida Tomoyuki4ORCID,Asakura Keisuke4,Sakamoto Michiie35

Affiliation:

1. Department of Pathology, Keio University School of Medicine , Tokyo , Japan

2. Department of Diagnostic Pathology, National Hospital Organization Saitama Hospital , Saitama , Japan

3. Keio University School of Medicine Department of Pathology, , Tokyo , Japan

4. Keio University School of Medicine Division of Thoracic Surgery, Department of Surgery, , Tokyo , Japan

5. School of Medicine, International University of Health and Welfare , Chiba , Japan

Abstract

Abstract Background The histological subtype of lung adenocarcinoma is a major prognostic factor. We developed a new artificial intelligence model to classify lung adenocarcinoma images into seven histological subtypes and adopted the model for whole-slide images to investigate the relationship between the distribution of histological subtypes and clinicopathological factors. Methods Using histological subtype images, which are typical for pathologists, we trained and validated an artificial intelligence model. Then, the model was applied to whole-slide images of resected lung adenocarcinoma specimens from 147 cases. Result The model achieved an accuracy of 99.7% in training sets and 90.4% in validation sets consisting of typical tiles of histological subtyping for pathologists. When the model was applied to whole-slide images, the predominant subtype according to the artificial intelligence model classification matched that determined by pathologists in 75.5% of cases. The predominant subtype and tumor grade (using the WHO fourth and fifth classifications) determined by the artificial intelligence model resulted in similar recurrence-free survival curves to those determined by pathologists. Furthermore, we stratified the recurrence-free survival curves for patients with different proportions of high-grade components (solid, micropapillary and cribriform) according to the physical distribution of the high-grade component. The results suggested that tumors with centrally located high-grade components had a higher malignant potential (P < 0.001 for 5–20% high-grade component). Conclusion The new artificial intelligence model for histological subtyping of lung adenocarcinoma achieved high accuracy, and subtype quantification and subtype distribution analyses could be achieved. Artificial intelligence model therefore has potential for clinical application for both quantification and spatial analysis.

Funder

JSPS KAKENHI

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3