Comorbid insomnia among breast cancer survivors and its prediction using machine learning: a nationwide study in Japan

Author:

Ueno Taro1,Ichikawa Daisuke1,Shimizu Yoichi23,Narisawa Tomomi2,Tsuji Katsunori2,Ochi Eisuke4,Sakurai Naomi5,Iwata Hiroji6,Matsuoka Yutaka J2ORCID

Affiliation:

1. SUSMED, Inc, Tokyo, Japan

2. Division of Health Care Research, Behavioral Science and Survivorship Research Group, Center for Public Health Sciences, National Cancer Center Japan, Tokyo, Japan

3. Division of Nursing, National Cancer Center Hospital, Tokyo, Japan

4. Faculty of Bioscience and Applied Chemistry, Hosei University, Koganei, Tokyo, Japan

5. Cancer Solutions, Tokyo, Japan

6. Department of Breast Oncology, Aichi Cancer Center Hospital, Nagoya, Japan

Abstract

Abstract Objective Insomnia is an increasingly recognized major symptom of breast cancer which can seriously disrupt the quality of life during and many years after treatment. Sleep problems have also been linked with survival in women with breast cancer. The aims of this study were to estimate the prevalence of insomnia in breast cancers survivors, clarify the clinical characteristics of their sleep difficulties and use machine learning techniques to explore clinical insights. Methods Our analysis of data, obtained in a nationwide questionnaire survey of breast cancer survivors in Japan, revealed a prevalence of suspected insomnia of 37.5%. With the clinical data obtained, we then used machine learning algorithms to develop a classifier that predicts comorbid insomnia. The performance of the prediction model was evaluated using 8-fold cross-validation. Results When using optimal hyperparameters, the L2 penalized logistic regression model and the XGBoost model provided predictive accuracy of 71.5 and 70.6% for the presence of suspected insomnia, with areas under the curve of 0.76 and 0.75, respectively. Population segments with high risk of insomnia were also extracted using the RuleFit algorithm. We found that cancer-related fatigue is a predictor of insomnia in breast cancer survivors. Conclusions The high prevalence of sleep problems and its link with mortality warrants routine screening. Our novel predictive model using a machine learning approach offers clinically important insights for the early detection of comorbid insomnia and intervention in breast cancer survivors.

Funder

National Cancer Center Research and Development Fund

Publisher

Oxford University Press (OUP)

Subject

Cancer Research,Radiology, Nuclear Medicine and imaging,Oncology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3