Using real-world electronic health record data to predict the development of 12 cancer-related symptoms in the context of multimorbidity

Author:

Bandyopadhyay Anindita1ORCID,Albashayreh Alaa2,Zeinali Nahid3,Fan Weiguo1,Gilbertson-White Stephanie2

Affiliation:

1. Department of Business Analytics, University of Iowa , Iowa City, IA 52242, United States

2. College of Nursing, University of Iowa , Iowa City, IA 52242, United States

3. Department of Informatics, University of Iowa , Iowa City, IA 52242, United States

Abstract

Abstract Objective This study uses electronic health record (EHR) data to predict 12 common cancer symptoms, assessing the efficacy of machine learning (ML) models in identifying symptom influencers. Materials and Methods We analyzed EHR data of 8156 adults diagnosed with cancer who underwent cancer treatment from 2017 to 2020. Structured and unstructured EHR data were sourced from the Enterprise Data Warehouse for Research at the University of Iowa Hospital and Clinics. Several predictive models, including logistic regression, random forest (RF), and XGBoost, were employed to forecast symptom development. The performances of the models were evaluated by F1-score and area under the curve (AUC) on the testing set. The SHapley Additive exPlanations framework was used to interpret these models and identify the predictive risk factors associated with fatigue as an exemplar. Results The RF model exhibited superior performance with a macro average AUC of 0.755 and an F1-score of 0.729 in predicting a range of cancer-related symptoms. For instance, the RF model achieved an AUC of 0.954 and an F1-score of 0.914 for pain prediction. Key predictive factors identified included clinical history, cancer characteristics, treatment modalities, and patient demographics depending on the symptom. For example, the odds ratio (OR) for fatigue was significantly influenced by allergy (OR = 2.3, 95% CI: 1.8-2.9) and colitis (OR = 1.9, 95% CI: 1.5-2.4). Discussion Our research emphasizes the critical integration of multimorbidity and patient characteristics in modeling cancer symptoms, revealing the considerable influence of chronic conditions beyond cancer itself. Conclusion We highlight the potential of ML for predicting cancer symptoms, suggesting a pathway for integrating such models into clinical systems to enhance personalized care and symptom management.

Funder

Betty Irene Moore Fellowship for Nurse Leaders and Innovators

College of Nursing, University of Iowa

Center for Advancing Multimorbidity Science

NINR

National Institute for Nursing Research

Holden Comprehensive Cancer Center

University of Iowa

National Cancer Institute

Iowa Health Data Resource

Institute for Clinical and Translational Science

CTSA University of Iowa

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3