The why and how of sunken stomata: does the behaviour of encrypted stomata and the leaf cuticle matter?

Author:

Šantrůček Jiří1

Affiliation:

1. Faculty of Science, University of South Bohemia , Branišovská 31, 370 05 České Budějovice , Czech Republic

Abstract

Abstract Background Stomatal pores in many species are separated from the atmosphere by different anatomical obstacles produced by leaf epidermal cells, especially by sunken stomatal crypts, stomatal antechambers and/or hairs (trichomes). The evolutionary driving forces leading to sunken or ‘hidden’ stomata whose antechambers are filled with hairs or waxy plugs are not fully understood. The available hypothetical explanations are based mainly on mathematical modelling of water and CO2 diffusion through superficial vs. sunken stomata, and studies of comparative autecology. A better understanding of this phenomenon may result from examining the interactions between the leaf cuticle and stomata and from functional comparisons of sunken vs. superficially positioned stomata, especially when transpiration is low, for example at night or during severe drought. Scope I review recent ideas as to why stomata are hidden and test experimentally whether hidden stomata may behave differently from those not covered by epidermal structures and so are coupled more closely to the atmosphere. I also quantify the contribution of stomatal vs. cuticular transpiration at night using four species with sunken stomata and three species with superficial stomata. Conclusions Partitioning of leaf conductance in darkness (gtw) into stomatal and cuticular contributions revealed that stomatal conductance dominated gtw across all seven investigated species with antechambers with different degrees of prominence. Hidden stomata contributed, on average, less to gtw (approx. 70 %) than superficial stomata (approx. 80 %) and reduced their contribution dramatically with increasing gtw. In contrast, species with superficial stomata kept their proportion in gtw invariant across a broad range of gtw. Mechanisms behind the specific behaviour of hidden stomata and the multipurpose origin of sunken stomata are discussed.

Funder

Czech Science Foundation

Publisher

Oxford University Press (OUP)

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3