Micromorphological and Chemical Characterization of Drimys winteri Leaf Surfaces: The Secondary Alcohols Forming Epicuticular Wax Crystals Are Accompanied by Alkanediol, Alkanetriol and Ketol Derivatives

Author:

Zhang Zhonghang1,Mistry Dwiti2,Jetter Reinhard12ORCID

Affiliation:

1. Department of Botany, University of British Columbia , 6270 University Boulevard, Vancouver, BC V6T 1Z4, Canada

2. Department of Chemistry, University of British Columbia , 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada

Abstract

Abstract The cuticle is a hydrophobic coating of most aerial plant surfaces crucial for limiting non-stomatal water loss. Plant cuticles consist of the lipid polyester cutin and associated waxes with compositions varying widely between plant species and organs. Here, we aimed to provide a comparative analysis of the dark-glossy adaxial and pale-glaucous abaxial sides of Drimys winteri (Winteraceae) leaves. Scanning electron microscopy showed nanotubular wax crystals lining the entire abaxial side of the leaf (including stomatal pores), while the adaxial side had patches of mixed platelet/tubule crystals and smooth areas between them. Consecutive treatments for wax removal and cutin depolymerization revealed that the waxes were deposited on a cutin network with micron-scale cavities across the entire abaxial surface including the stomata pores, and on a microscopically smooth cutin surface on the adaxial side of the leaf. Gas chromatography coupled to mass spectrometry and flame ionization detection showed that the wax mixtures on both sides of the leaf were complex mixtures of very-long-chain compounds dominated by the secondary alcohol nonacosan-10-ol and alkanediols with one hydroxyl on C-10. It is therefore very likely that the characteristic tubular wax crystals of both leaf sides are formed by these alcohols and diols. Further secondary alcohols and alkanediols, as well as ketols and alkanetriols with one functional group on C-10, were identified based on mass spectral fragmentation patterns. The similarities between all these mid-chain-functionalized compounds suggest that they are derived from nonacosan-10-ol via regio-specific hydroxylation reactions, likely catalyzed by three P450-dependent monooxygenases with different regio-specificities.

Funder

Natural Science and Engineering Council (Canada) Discovery Grants Program

Publisher

Oxford University Press (OUP)

Reference60 articles.

1. Molecular characterization of the CER1 gene of Arabidopsis involved in epicuticular wax biosynthesis and pollen fertility;Aarts;Plant Cell,1995

2. The very-long-chain hydroxy fatty acyl-CoA dehydratase PASTICCINO2 is essential and limiting for plant development;Bach;Proc. Natl. Acad. Sci. U. S. A.,2008

3. The comparative morphology of the Winteraceae: V. Foliar epidermis and sclerenchyma;Bailey;J. Arnold Arbor.,1944

4. Classification and terminology of plant epicuticular waxes;Barthlott;Bot. J. Linn. Soc.,1998

5. Waterlily, poppy, or sycamore: on the systematic position of Nelumbo;Barthlott;Flora,1996

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3