Root grafts matter for inter-tree water exchange – a quantification of water translocation between root grafted mangrove trees using field data and model-based indications

Author:

Wimmler Marie-Christin1ORCID,Vovides Alejandra G2,Peters Ronny1,Walther Marc1,Nadezhdina Nadezhda3ORCID,Berger Uta1

Affiliation:

1. Faculty of Environmental Sciences, Department of Forest Sciences, Chair of Forest Biometrics and Systems Analysis, Technische Universität Dresden , 01062 Dresden , Germany

2. School of Geographical and Earth Sciences, University of Glasgow , Glasgow , UK

3. Institute of Forest Botany, Dendrology and Geobiocenology, Mendel University in Brno , Brno , Czech Republic

Abstract

Abstract Background and Aims Trees interconnected through functional root grafts can exchange resources, but the effect of exchange on trees remains under debate. A mechanistic understanding of resource exchange via functional root grafts will help understand their ecological implications for tree water exchange for individual trees, groups of trees and forest stands. Methods To identify the main patterns qualitatively describing the movement of sap between grafted trees, we reviewed the available literature on root grafting in woody plants that focus on tree allometry and resource translocation via root grafts. We then extended the BETTINA model, which simulates mangrove (Avicennia germinans) tree growth on the individual tree scale, to synthesize the available empirical information. Using allometric data from a field study in mangrove stands, we simulated potential water exchange and analysed movement patterns between grafted trees. Key Results In the simulations, relative water exchange ranged between −9.17 and 20.3 %, and was driven by gradients of water potential, i.e. differences in tree size and water availability. Moreover, the exchange of water through root grafts alters the water balance of trees and their feedback with the soil: grafted trees that receive water from their neighbours reduce their water uptake. Conclusions Our individual-tree modelling study is a first theoretical attempt to quantify root graft-mediated water exchange between trees. Our findings indicate that functional root grafts represent a vector of hydraulic redistribution, helping to maintain the water balance of grafted trees. This non-invasive approach can serve as a basis for designing empirical studies to better understand the role of grafted root interaction networks on a broader scale.

Funder

Volkswagen Foundation

Publisher

Oxford University Press (OUP)

Subject

Plant Science

Reference69 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3