Plants and water: the search for a comprehensive understanding

Author:

Rockwell Fulton1,Sage Rowan F2

Affiliation:

1. Department of Organismal Biology, Harvard University , Cambridge, MA , USA

2. Department of Ecology and Evolutionary Biology, The University of Toronto , 25 Willcocks Street, Toronto, ON M5S3B2 , Canada

Abstract

Abstract We learn early in life sciences classes that water is the solution of life, working in tandem with carbon to make life as we know it possible. Globally, the abundance of water can be misleading, as most of this water is unavailable, being overly salinized in the oceans or locked in deep underground reserves. On land, the critical supply is of freshwater, which is unevenly distributed in space and time. Even the wettest environments can experience episodic water deficit, and flash flooding periodically occurs in arid landscapes. While humanity can capture, store and transport freshwater over large distances to ensure sustained supply, such options are not apparent for plants except in an immediate local context. Plants must make do with the water in their immediate surroundings, whether it be abundant or scarce. How they do this has led to a myriad of adaptive solutions, involving capturing, storing and transporting water. The traits that enable them to optimize water use in a range of hydraulic environments, subject to multivariate selective constraints, are the essence of the discipline of plant–water relations.

Publisher

Oxford University Press (OUP)

Subject

Plant Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3