Phosphoinositide 3-kinase γ deficiency attenuates kidney injury and fibrosis in angiotensin II–induced hypertension

Author:

An Changlong1,Wen Jia1,Hu Zhaoyong2,Mitch William E2,Wang Yanlin1345

Affiliation:

1. Division of Nephrology, Department of Medicine, University of Connecticut Health Center, Farmington, CT, USA

2. Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, TX, USA

3. Department of Cell Biology, University of Connecticut Health Center, Farmington, CT, USA

4. Institute for Systems Genomics, University of Connecticut Health Center, Farmington, CT, USA

5. Renal Section, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA

Abstract

Abstract Background We have shown that the CXCL16/CXCR6 axis plays a critical role in recruiting inflammatory cells and bone marrow-derived fibroblasts into the kidney leading to renal injury and fibrosis. However, the underlying signaling mechanisms are not known. Methods In the present study, we examined the role of phosphoinositide-3 kinase γ (PI3Kγ) signaling in the recruitment of inflammatory cells and bone marrow-derived fibroblasts into the kidney and development of renal injury and fibrosis in an experimental model of hypertension induced by angiotensin II. Results Blood pressure was comparable between wild-type (WT) and PI3Kγ knockout (KO) mice at baseline. Angiotensin II treatment led to an increase in blood pressure that was similar between WT and PI3Kγ KO mice. Compared with WT mice, PI3Kγ KO mice were protected from angiotensin II-induced renal dysfunction and injury and developed less proteinuria. PI3Kγ deficiency suppressed bone marrow-derived fibroblast accumulation and myofibroblast formation in the kidney and inhibited total collagen deposition and extracellular matrix protein production in the kidney in response to angiotensin II. PI3Kγ deficiency inhibited the infiltration of F4/80+ macrophages and CD3+ T cells into the kidney and reduced gene expression levels of pro-inflammatory cytokines in the kidney following angiotensin II treatment. Finally, inhibition of PI3Kγ suppressed CXCL16-induced monocyte migration in vitro. Conclusion These results indicate that PI3Kγ mediates the influx of macrophages, T cells and bone marrow-derived fibroblasts into the kidney resulting in kidney injury and fibrosis.

Funder

US Department of Veterans Affairs

US National Institutes of Health

Dialysis Clinic Inc.

NIH

Publisher

Oxford University Press (OUP)

Subject

Transplantation,Nephrology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3