Comparative effects of two multispecies direct-fed microbial products on energy status, nutrient digestibility, and ruminal fermentation, bacterial community, and metabolome of beef steers

Author:

Ogunade Ibukun M1,McCoun Megan1,Idowu Modoluwamu D1,Peters Sunday O2ORCID

Affiliation:

1. College of Agriculture, Communities, and the Environment, Kentucky State University, Frankfort, KY

2. Department of Animal Science, Berry College, Mount Berry, GA

Abstract

Abstract We examined the effects of two direct-fed microbials (DFM) containing multiple microbial species and their fermentation products on energy status, nutrient digestibility, and ruminal fermentation, bacterial community, and metabolome of beef steers. Nine ruminally cannulated Holstein steers (mean ± SD body weight: 243 ± 12.4 kg) were assigned to three treatments arranged in a triplicated 3 × 3 Latin square design with three 21-d periods. Dietary treatments were 1) control (CON; basal diet), 2) Commence (PROB; basal diet plus 19 g/d of Commence), and 3) RX3 (SYNB; basal diet plus 28 g/d of RX3). Commence and RX3 are both multispecies DFM products. From day 16 to 20 of each period, feed and fecal samples were collected daily to determine the apparent total tract digestibilities of nutrients using indigestible neutral detergent fiber method. On day 21 of each period, blood samples were collected for analysis of plasma glucose and nonesterified fatty acid. Ruminal contents were collected at approximately 1, 3, 6, 9, 12, and 18 h after feeding on day 21 for analysis of volatile fatty acids (VFA), lactate, ammonia-N concentrations, bacterial community, and metabolome profile. Total tract digestibilities of nutrients did not differ (P > 0.05) among treatments. Compared with CON, steers fed either supplemental PROB or SYNB had greater (P = 0.04) plasma glucose concentrations. Compared with CON, total ruminal VFA, propionate, isovalerate, and valerate concentrations increased (P ≤ 0.05) or tended to increase (P ≤ 0.10) with either supplemental PROB or SYNB, but were not different (P > 0.05) between PROB and SYNB. Compared with CON, PROB reduced (P ≤ 0.05) the relative abundance of Prevotella 1 and Prevotellaceae UCG-001 but increased (P ≤ 0.05) the relative abundance of Rikenellaceae RC9, Succinivibrionaceae UCG-001, Succiniclasticum, and Ruminococcaceae UCG-002. Supplemental SYNB decreased (P ≤ 0.05) the relative abundance of Prevotella 1 and Prevotellaceae UCG-001 but increased (P ≤ 0.05) the relative abundance of Prevotella 7, Succinivibrio, Succiniclasticum, and Ruminococcaceae UCG-014. Compared with CON, metabolome analysis revealed that some amino acids were increased (P ≤ 0.05) in steers fed PROB. This study demonstrated that, compared with CON, supplementation of either PROB or SYNB altered the ruminal bacterial community and metabolome differently; however, their effects on the ruminal VFA profile and energy status of the steers were not different from each other.

Funder

Land O’ Lakes Inc

U.S. Department of Agriculture

National Institute of Food and Agriculture

Publisher

Oxford University Press (OUP)

Subject

Genetics,Animal Science and Zoology,General Medicine,Food Science

Reference63 articles.

1. Effects of a blend of Saccharomyces cerevisiae-based direct-fed microbial and fermentation products in the diet of newly weaned beef steers: growth performance, whole-blood immune gene expression, serum biochemistry, and plasma metabolome1;Adeyemi;J. Anim. Sci,2019

2. Effects of a blend of Saccharomyces cerevisiae-based direct-fed microbial and fermentation products on plasma carbonyl-metabolome and fecal bacterial community of beef steers;Adeyemi;J. Anim. Sci. Biotechnol,2020

3. Gluconeogenesis in dairy cows: the secret of making sweet milk from sour dough;Aschenbach;IUBMB Life,2010

4. Redox regulation and reaction mechanism of human cystathionine beta synthase: a PLP-dependent homo-sensor protein;Beatty;Arch. Biochem. Biophys,2005

5. Effects of bacterial direct-fed microbials and yeast on site and extent of digestion, blood chemistry, and subclinical ruminal acidosis in feedlot cattle;Beauchemin;J. Anim. Sci,2003

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3