Phytate degradation cascade in pigs as affected by phytase supplementation and rapeseed cake inclusion in corn–soybean meal-based diets

Author:

Rosenfelder-Kuon Pia1,Klein Nicolas1,Zegowitz Benedikt1,Schollenberger Margit1,Kühn Imke2,Thuringer Lucia1,Seifert Jana1,Rodehutscord Markus1ORCID

Affiliation:

1. Institute of Animal Science, University of Hohenheim, Stuttgart, Germany

2. AB Vista, Darmstadt, Germany

Abstract

Abstract Two experiments (Exp.) with ileally cannulated growing barrows were conducted. The concentrations of positional inositol phosphate (InsP) isomers in ileal digesta and feces were determined, as well as the prececal and total tract phytate (InsP6) hydrolysis, and digestibility of dry matter, P, Ca, nitrogen, and gross energy. Prececal amino acid (AA) digestibility and digestive enzyme activities in ileal digesta were also studied. In both Exp., pigs had an initial body weight (BW) of 28 kg and were completely randomized to a Double Latin Square Design with eight pigs, four diets, and three periods of 12 d each. Feces and ileal digesta were collected for 5 d and 2 d, respectively. Pigs were housed individually in stainless steel metabolic units. Water was available ad libitum and feed was provided two times daily at an amount of 4% of mean BW. In Exp. 1, pigs received a corn–soybean meal (SBM)-based diet that was supplemented with 0, 750, 1,500, or 3,000 FTU of a microbial phytase/kg diet. In Exp. 2, pigs were allotted to a 2 × 2 arrangement of diets based on corn and SBM or an SBM-rapeseed cake (RSC) mix and phytase supplementation at 0 or 1,500 FTU/kg of diet. In ileal digesta of pigs fed without the phytase supplement, the dominating InsP isomers beside InsP6 were InsP5 isomers. The InsP pattern in ileal digesta changed with the inclusion of microbial phytase in both Exp., as there was a remarkable increase in Ins(1,2,5,6)P4 concentration (P < 0.001). In both Exp., the myo-inositol concentration in ileal digesta was greater upon phytase addition (P < 0.001). Without phytase supplementation, prececal and total tract P digestibility were low, whereas hardly any InsP6 was excreted in feces. There was no difference between prececal and total tract P digestibility values. For most AA studied in Exp. 2, prececal digestibility was lower (P < 0.01) when the diet contained RSC. However, phytase supplementation did not significantly affect prececal AA digestibility in both Exp. The present study showed that InsP6 disappearance by the end of the ileum can be increased up to around 90% in SBM- and SBM–RSC-based diets when microbial phytase is supplemented, but prececal P digestibility hardly exceeded 60%. The study confirms that pigs cannot benefit from a remarkable InsP6 degradation in the hindgut.

Publisher

Oxford University Press (OUP)

Subject

Genetics,Animal Science and Zoology,General Medicine,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3