Functional and taxonomic biogeography of phytoplankton and zooplankton communities in relation to environmental variation across the contiguous USA

Author:

Sodré Elder De Oliveira12,Langlais-Bourassa Alexandre1,Pollard Amina I3,Beisner Beatrix E1

Affiliation:

1. Department of Biological Sciences and Groupe de Recherche Universitaire en Limnologie et en Environnement Aquatique (GRIL), University of Québec at Montréal, C.P. 8888, Succ. Centre-Ville, Montréal, QC H3C 3P8, Canada

2. Departamento de Ecologia, Universidade Federal do Rio de Janeiro, CCS, IB, Caixa Postal 68020, cep 21941-970, Rio de Janeiro, Brasil

3. United States Environmental Protection Agency, Office of Water, Washington, D.C. 20004 USA

Abstract

AbstractFor biomonitoring of aquatic ecosystems, the use of coarse group classifications, either taxonomic or functional, has been proposed as an alternative to more highly resolved taxonomic identification. We tested this proposition for phytoplankton and zooplankton using a pan-United States dataset, which also allows us to investigate biogeographic relationships between plankton groups and environmental variables. We used data from 1010 lakes composing the 2012 US National Lakes Assessment and compared relationships derived using genus-level, more aggregated taxonomic resolution and functional types. We examined responses nationally and by ecoregion. Differences in plankton assemblages among ecoregions were detected, especially at genus-level classification. Our analyses show a gradient of altitude and temperature influencing both phytoplankton and zooplankton, and another gradient of nutrients and anthropogenic activity influencing mostly phytoplankton. The overall variation in the planktonic communities explained by environmental variables ranged from 4 to 22%, but together indicated that aggregated taxonomic classification performed better for phytoplankton; for zooplankton, the performance of different classification types depended on the ecoregion. Our analyses also revealed linkages between particular phytoplankton and zooplankton groups, mainly attributable to similar environmental responses and trophic interactions. Overall, the results support the applicability of coarse classifications to infer general responses of plankton communities to environmental drivers.

Funder

Coordination for the Improvement of Higher Education Personnel

Natural Sciences and Engineering Research Council of Canada

Publisher

Oxford University Press (OUP)

Subject

Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3