Large-scale variation in phytoplankton community composition of >1000 lakes across the USA

Author:

Verspagen Jolanda M HORCID,Ji XingORCID,Liu Quan-XingORCID,Huisman JefORCID

Abstract

Abstract Although environmental impacts on the biodiversity and species composition of lakes have been studied in great detail at local and regional scales, unraveling the big picture of how lake communities respond to environmental variation across large spatial scales has received less attention. We performed a comprehensive analysis to assess how the phytoplankton community composition varies among >1000 lakes across the conterminous United States of America. Our results show that lake-to-lake similarity in species composition was low even at the local scale, and slightly decreased with geographical distance. Analysis of the compositional data by Dirichlet regression revealed that the geographical variation in phytoplankton community composition was best explained by total phosphorus (TP), water temperature, pH, and lake size. High TP concentrations were associated with high relative abundances of cyanobacteria and euglenophytes at the expense of other phytoplankton groups. High lake temperatures stimulated cyanobacteria, dinoflagellates, desmids and euglenophytes, whereas cryptophytes, golden algae and diatoms were relatively more abundant in colder lakes. Low lake pH correlated with high dissolved CO2 concentrations, which may explain why it benefitted phytoplankton groups with inefficient carbon concentrating mechanisms such as golden algae and euglenophytes. Conversely, the relative abundance of cyanobacteria showed a pronounced increase with lake pH. Large lakes showed higher relative abundances of cyanobacteria and diatoms, whereas small lakes showed higher relative abundances of chlorophytes, desmids and euglenophytes. Biodiversity increased with lake temperature, but decreased at high TP concentrations and pH. The key environmental variables identified by our study (high phosphorus loads, warm temperature, low pH) are associated with anthropogenic pressures such as eutrophication, global warming and rising atmospheric CO2 concentration. Hence, our results provide a comprehensive illustration of the major impact of these anthropogenic pressures on the biodiversity and taxonomic composition of lake phytoplankton communities.

Funder

National Key R&D Program

Aard- en Levenswetenschappen, Nederlandse Organisatie voor Wetenschappelijk Onderzoek

National Natural Science Foundation of China

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3