Affiliation:
1. Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, People’s Republic of China
Abstract
Abstract
Alternative splicing (AS) of mRNA precursors allows the synthesis of multiple mRNAs from a single primary transcript, significantly expanding the information content and regulatory possibilities of higher eukaryotic genomes. During mammalian development, AS drives certain decisive changes in different physiological processes. As development progresses, the maternal-to-zygotic transition (MZT) will trigger two processes: elimination of a subset of maternal mRNA and transcription of the zygote genome begins. Recent high-throughput technological advancements have facilitated genome-wide AS, whereas its analysis in mouse oocyte transition to the zygote stage has not been reported. We present a high-resolution global analysis of AS transitions and discovered extensive AS transitions between mouse oocyte and zygote. The difference of AS patterns was further confirmed using reverse transcription-polymerase chain reaction analysis. Many genes with specific AS events in mouse oocytes are differentially expressed between oocyte and zygote, but only a few genes with specific AS events in zygote are differentially expressed between oocyte and zygote. We provide a landscape of AS events in mouse oocyte and zygote. Our results advance the understanding of AS transitions during mouse fertilization and its potential functions for MZT and further development.
Funder
National Natural Science Foundation of China
Special Funds for Talents in Northwest A&F University
Innovation Project of Science and Technology in Shaanxi Province
National Major Project for Production of Transgenic Breeding
Publisher
Oxford University Press (OUP)
Subject
Cell Biology,General Medicine,Reproductive Medicine
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献