High-quality single-cell transcriptomics from ovarian histological sections during folliculogenesis

Author:

Ikeda Hiroki1ORCID,Miyao Shintaro1,Nagaoka So1,Takashima Tomoya1ORCID,Law Sze-Ming1,Yamamoto Takuya234ORCID,Kurimoto Kazuki15ORCID

Affiliation:

1. Department of Embryology, School of Medicine, Nara Medical University

2. Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan

3. Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan

4. Medical-risk Avoidance based on iPS Cells Team, RIKEN Center for Advanced Intelligence Project (AIP), Kyoto, Japan

5. Advanced Medical Research Center, Nara Medical University

Abstract

High-quality, straightforward single-cell RNA sequencing (RNA-seq) with spatial resolution remains challenging. Here, we developed DRaqL (direct RNA recovery and quenching for laser capture microdissection), an experimental approach for efficient cell lysis of tissue sections, directly applicable to cDNA amplification. Single-cell RNA-seq combined with DRaqL allowed transcriptomic profiling from alcohol-fixed sections with efficiency comparable with that of profiling from freshly dissociated cells, together with effective exon–exon junction profiling. The combination of DRaqL with protease treatment enabled robust and efficient single-cell transcriptome analysis from formalin-fixed tissue sections. Applying this method to mouse ovarian sections, we were able to predict the transcriptome of oocytes by their size and identified an anomaly in the size–transcriptome relationship relevant to growth retardation of oocytes, in addition to detecting oocyte-specific splice isoforms. Furthermore, we identified differentially expressed genes in granulosa cells in association with their proximity to the oocytes, suggesting distinct epigenetic regulations and cell-cycle activities governing the germ–soma relationship. Thus, DRaqL is a versatile, efficient approach for high-quality single-cell RNA-seq from tissue sections, thereby revealing histological heterogeneity in folliculogenic transcriptome.

Funder

MEXT | Japan Society for the Promotion of Science

Takeda Science Foundation

Daiichi Sankyo Foundation of Life Science

Publisher

Life Science Alliance, LLC

Subject

Health, Toxicology and Mutagenesis,Plant Science,Biochemistry, Genetics and Molecular Biology (miscellaneous),Ecology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3