Maternal blood transcriptome as a sensor of fetal organ maturation at the end of organogenesis in cattle

Author:

Rabaglino Maria Belen1,Sánchez José María2,McDonald Michael1,O’Callaghan Elena1,Lonergan Pat1

Affiliation:

1. School of Agriculture and Food Science, University College Dublin , Belfield, Dublin 4 , Ireland

2. Departamento de Reproducción Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria , Madrid , Spain

Abstract

Abstract Harnessing information from the maternal blood to predict fetal growth is attractive yet scarcely explored in livestock. The objectives were to determine the transcriptomic modifications in maternal blood and fetal liver, gonads, and heart according to fetal weight and to model a molecular signature based on the fetal organs allowing the prediction of fetal weight from the maternal blood transcriptome in cattle. In addition to a contemporaneous maternal blood sample, organ samples were collected from 10 male fetuses at 42 days of gestation for RNA-sequencing. Fetal weight ranged from 1.25 to 1.69 g (mean = 1.44 ± 0.15 g). Clustering data analysis revealed clusters of co-expressed genes positively correlated with fetal weight and enriching ontological terms biologically relevant for the organ. For the heart, the 1346 co-expressed genes were involved in energy generation and protein synthesis. For the gonads, the 1042 co-expressed genes enriched seminiferous tubule development. The 459 co-expressed genes identified in the liver were associated with lipid synthesis and metabolism. Finally, the cluster of 571 co-expressed genes determined in maternal blood enriched oxidative phosphorylation and thermogenesis. Next, data from the fetal organs were used to train a regression model of fetal weight, which was predicted with the maternal blood data. The best prediction was achieved when the model was trained with 35 co-expressed genes overlapping between heart and maternal blood (root-mean-square error = 0.04, R2 = 0.93). In conclusion, linking transcriptomic information from maternal blood with that from the fetal heart unveiled maternal blood as a predictor of fetal development.

Funder

Marie Skłodowska-Curie Actions Individual Fellowship

Talent Attraction Comunidad Autónoma de Madrid Program

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,General Medicine,Reproductive Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3