Affiliation:
1. Department of Veterinary and Clinical Diagnostic Sciences, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
Abstract
Abstract
Preimplantation equine embryos synthesize and secrete fibrinogen, which is a peculiar finding as fibrinogen synthesis almost exclusively occurs in the liver. This study investigated the hypothesis that conceptus-derived fibrinogen mediates cell adhesion during fixation. On day 21 of pregnancy, five integrin subunits, including ITGA5, ITGB1, ITGAV, and ITGB1, displayed significantly higher transcript abundance than on day 16 of pregnancy. Endometrial epithelial cells adhered to fibrinogen in an integrin-dependent manner in an in vitro cell adhesion assay. Bilaminar trophoblast and allantochorion expressed fibrinogen transcript, indicating that fibrinogen expression persists past fixation. Preimplantation-phase endometrium, conceptuses, and microcotyledonary tissue expressed components of the clotting cascade regulating fibrin homeostasis, leaving open the possibility that fibrinogen is converted to fibrin. Fibrinogen is likely to have functions beyond mediating cell adhesion, such trapping growth factors and triggering signaling cascades, and has remarkable parallels to the expression of fibrinogen by some tumors. The deposition of fibrinogen within tumor stroma is characteristic of breast carcinoma, and tumor-derived fibrinogen has been implicated in the metastatic potential of circulating tumor cells. DNA methylation of the fibrinogen locus in equine conceptuses was examined in comparison to liver and endometrium, and across the full gene cluster, was significantly higher for endometrium than liver and conceptus. DNA methylation of regulatory regions did not differ between liver and conceptus, and was significantly lower than in endometrium. These results, therefore, support the hypothesis of DNA methylation being a regulator of fibrinogen expression in the conceptus.
Funder
Natural Sciences and Engineering Research Council of Canada
Publisher
Oxford University Press (OUP)
Subject
Cell Biology,General Medicine,Reproductive Medicine
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献