Measuring “Schmeduling”

Author:

Rees-Jones Alex1,Taubinsky Dmitry2

Affiliation:

1. Cornell University and NBER

2. University of California, Berkeley and NBER

Abstract

Abstract What mental models do individuals use to approximate their tax schedule? Using incentivized forecasts of the U.S. Federal income tax schedule, we estimate the prevalence of the “schmeduling” heuristics for constructing mental representations of nonlinear incentive schemes. We find evidence of widespread reliance on the “ironing” heuristic, which linearizes the tax schedule using one’s average tax rate. In our preferred specification, 43% of the population irons. We find no evidence of reliance on the “spotlighting” heuristic, which linearizes the tax schedule using one’s marginal tax rate. We show that the presence of ironing rationalizes a number of empirical patterns in individuals’ perceptions of tax liability across the income distribution. Furthermore, while our empirical framework accommodates a rich class of other misperceptions, we find that a simple model including only ironers and correct forecasters accurately predicts average underestimation of marginal tax rates. We replicate our finding of prevalent ironing, and a lack of other systematic misperceptions, in a controlled experiment that studies real-stakes decisions across exogenously varied tax schedules. To illustrate the policy relevance of the ironing heuristic, we show that it augments the benefits of progressive taxation in a standard model of earnings choice. We quantify these benefits in a calibrated model of the U.S. tax system.

Publisher

Oxford University Press (OUP)

Subject

Economics and Econometrics

Reference78 articles.

Cited by 62 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3