A Parallel Tempering algorithm for probabilistic sampling and multimodal optimization

Author:

Sambridge Malcolm1

Affiliation:

1. Research School of Earth Sciences, Australian National University, Canberra, ACT 0200, Australia. E-mail: malcolm.sambridge@anu.edu.au

Abstract

Abstract Non-linear inverse problems in the geosciences often involve probabilistic sampling of multimodal density functions or global optimization and sometimes both. Efficient algorithmic tools for carrying out sampling or optimization in challenging cases are of major interest. Here results are presented of some numerical experiments with a technique, known as Parallel Tempering, which originated in the field of computational statistics but is finding increasing numbers of applications in fields ranging from Chemical Physics to Astronomy. To date, experience in use of Parallel Tempering within earth sciences problems is very limited. In this paper, we describe Parallel Tempering and compare it to related methods of Simulated Annealing and Simulated Tempering for optimization and sampling, respectively. A key feature of Parallel Tempering is that it satisfies the detailed balance condition required for convergence of Markov chain Monte Carlo (McMC) algorithms while improving the efficiency of probabilistic sampling. Numerical results are presented on use of Parallel Tempering for trans-dimensional inversion of synthetic seismic receiver functions and also the simultaneous fitting of multiple receiver functions using global optimization. These suggest that its use can significantly accelerate sampling algorithms and improve exploration of parameter space in optimization. Parallel Tempering is a meta-algorithm which may be used together with many existing McMC sampling and direct search optimization techniques. It's generality and demonstrated performance suggests that there is significant potential for applications to both sampling and optimization problems in the geosciences.

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

Cited by 208 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3