Development of a New Assay for Complex I of the Respiratory Chain

Author:

Brooks Hilary,Krähenbühl Stephan1

Affiliation:

1. Department of Clinical Pharmacology, University of Berne, Murtenstrasse 35, CH-3010 Berne, Switzerland

Abstract

AbstractBackground: Measurement of complex I activity has been hampered by the large amounts of tissue required and the resulting turbidity of the assay solution, which makes spectrophotometric analysis difficult. We have developed a new assay for measuring the activity of complex I in isolated mitochondria that is also applicable to skeletal muscle homogenate in patients with suspected mitochondrial diseases.Methods: The method was a radioenzymatic assay based on the preferential oxidation of the 4B hydrogen of NADH by complex I. We prepared tritiated isoforms of NADH for both the respective 4A-3H and 4B-3H positions. Enzyme in the form of purified mitochondria or homogenate was prepared from rat or human skeletal muscle and incubated with the respective radioisotopes. The product (3H2O) was collected after charcoal adsorption of unreacted NADH and taken as an indicator of NADH oxidation. Sensitivity to rotenone was used as a measure of complex I specific activity.Results: The assay was linear with time and protein for isolated mitochondria and tissue homogenates from rats and humans. The Vmax and Km values obtained for 4B-NADH with isolated rat skeletal muscle mitochondria were 35 μmol/L and 90 μmol · min−1 · mg protein−1, respectively. The assay was reproducible and useable for routine measurements in human skeletal muscle. The sensitivity was >10-fold higher than the sensitivities of spectrophotometric techniques.Conclusions: The results of our studies demonstrate the successful development of a new assay for complex I that is rapid, easy to perform, and that enables the processing of multiple samples at one time.

Publisher

Oxford University Press (OUP)

Subject

Biochemistry, medical,Clinical Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3