Artificial neural network predictions of urinary calculus compositions analyzed with infrared spectroscopy

Author:

Volmer M1,Wolthers B G1,Metting H J1,de Haan T H1,Coenegracht P M1,van der Slik W1

Affiliation:

1. Central Laboratory for Clinical Chemistry, University Hospital Groningen, The Netherlands

Abstract

Abstract Infrared (IR) spectroscopy is used to analyze urinary calculus (renal stone) constituents. However, interpretation of IR spectra for quantifying urinary calculus constituents in mixtures is difficult, requiring expert knowledge by trained technicians. In our laboratory IR spectra of unknown calculi are compared with references spectra in a computerized library search of 235 reference spectra from various mixtures of constituents in different proportions, followed by visual interpretation of band intensities for more precise semiquantitative determination of the composition. To minimize the need for this last step, we tested artificial neural network models for detecting the most frequently occurring compositions of urinary calculi. Using constrained mixture designs, we prepared various samples containing ammonium hydrogen urate, brushite, carbonate apatite, cystine, struvite, uric acid, weddellite, and whewellite for use as a training set. We assayed known artificial mixtures as well as selected patients' samples from which the semiquantitative compositions were determined by computerized library search followed by visual interpretation. Neural network analysis was more accurate than the library search and required less expert knowledge because careful visual inspection of the band intensities could be omitted. We conclude that neural networks are promising tools for routine quantification of urinary calculus compositions and for other related types of analyses in the clinical laboratory.

Publisher

Oxford University Press (OUP)

Subject

Biochemistry, medical,Clinical Biochemistry

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3