Research On Pre-Training Method and Generalization Ability of Big Data Recognition Model of the Internet of Things

Author:

Tan Junyang1,Xia Dan2,Dong Shiyun2,Zhu Honghao2,Xu Binshi2

Affiliation:

1. National Key Laboratory for Remanufacturing, Beijing, China and The Department of 63926 Troops, Beijing, China

2. National Key Laboratory for Remanufacturing, Beijing, China

Abstract

The Internet of Things and big data are currently hot concepts and research fields. The mining, classification, and recognition of big data in the Internet of Things system are the key links that are widely of concern at present. The artificial neural network is beneficial for multi-dimensional data classification and recognition because of its strong feature extraction and self-learning ability. Pre-training is an effective method to address the gradient diffusion problem in deep neural networks and could result in better generalization. This article focuses on the performance of supervised pre-training that uses labelled data. In particular, this pre-training procedure is a simulation that shows the changes in judgment patterns as they progress from primary to mature within the human brain. In this article, the state-of-the-art of neural network pre-training is reviewed. Then, the principles of the auto-encoder and supervised pre-training are introduced in detail. Furthermore, an extended structure of supervised pre-training is proposed. A set of experiments are carried out to compare the performances of different pre-training methods. These experiments include a comparison between the original and pre-trained networks as well as a comparison between the networks with two types of sub-network structures. In addition, a homemade database is established to analyze the influence of pre-training on the generalization ability of neural networks. Finally, an ordinary convolutional neural network is used to verify the applicability of supervised pre-training.

Funder

National Key Research and Development Program of China

Beijing Science and Technology Special Project

Beijing Science and Technology Planning Project Support

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Reference30 articles.

1. Big data effective information filtering mining of Internet of Things based on SVM;Li Y. W.;Control Engineering of China,2016

2. Differential epidemic model of virus and worms in computer network;Bimal K. M.;International Journal of Network Security,2012

3. Artificial neural network predictions of urinary calculus compositions analyzed with infrared spectroscopy

4. Deep Machine Learning - A New Frontier in Artificial Intelligence Research [Research Frontier]

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3