Evolving Applications of Artificial Intelligence and Machine Learning in Infectious Diseases Testing

Author:

Tran Nam K1,Albahra Samer1,May Larissa2,Waldman Sarah3,Crabtree Scott3,Bainbridge Scott1,Rashidi Hooman1

Affiliation:

1. Department of Pathology and Laboratory Medicine, UC Davis School of Medicine, CA

2. Department of Emergency Medicine, UC Davis School of Medicine, CA

3. Department of Internal Medicine, Division of Infectious Diseases, UC Davis School of Medicine, CA

Abstract

Abstract Background Artificial intelligence (AI) and machine learning (ML) are poised to transform infectious disease testing. Uniquely, infectious disease testing is technologically diverse spaces in laboratory medicine, where multiple platforms and approaches may be required to support clinical decision-making. Despite advances in laboratory informatics, the vast array of infectious disease data is constrained by human analytical limitations. Machine learning can exploit multiple data streams, including but not limited to laboratory information and overcome human limitations to provide physicians with predictive and actionable results. As a quickly evolving area of computer science, laboratory professionals should become aware of AI/ML applications for infectious disease testing as more platforms are become commercially available. Content In this review we: (a) define both AI/ML, (b) provide an overview of common ML approaches used in laboratory medicine, (c) describe the current AI/ML landscape as it relates infectious disease testing, and (d) discuss the future evolution AI/ML for infectious disease testing in both laboratory and point-of-care applications. Summary The review provides an important educational overview of AI/ML technique in the context of infectious disease testing. This includes supervised ML approaches, which are frequently used in laboratory medicine applications including infectious diseases, such as COVID-19, sepsis, hepatitis, malaria, meningitis, Lyme disease, and tuberculosis. We also apply the concept of “data fusion” describing the future of laboratory testing where multiple data streams are integrated by AI/ML to provide actionable clinical knowledge.

Publisher

Oxford University Press (OUP)

Subject

Biochemistry (medical),Clinical Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3