Predicting Schistosomiasis Intensity in Africa: A Machine Learning Approach to Evaluate the Progress of WHO Roadmap 2030

Author:

Chen Xinyue1,Le Jiaxu1,Hu Yi1

Affiliation:

1. Department of Epidemiology and Biostatistics, School of Public Health, Fudan University, Shanghai, China; Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China; Laboratory for Spatial Analysis and Modeling, School of Public Health, Fudan University, Shanghai, China

Abstract

ABSTRACT. The World Health Organization (WHO) 2030 Roadmap aims to eliminate schistosomiasis as a public health issue, targeting reductions in the heavy intensity of infections. Previous studies, however, have predominantly used prevalence as the primary indicator of schistosomiasis. We introduce several machine learning (ML) algorithms to predict infection intensity categories, using morbidity prevalence, with the aim of assessing the elimination of schistosomiasis in Africa, as outlined by the WHO. We obtained morbidity prevalence and infection intensity data from the Expanded Special Project to Eliminate Neglected Tropical Diseases, which spans 12 countries in sub-Saharan Africa. We then used a series of ML algorithms to predict the prevalence of infection intensity categories for Schistosoma haematobium and Schistosoma mansoni, with morbidity prevalence and several relevant environmental and demographic covariates from remote-sensing sources. The optimal model had high accuracy and stability; it achieved a mean absolute error (MAE) of 0.02, a root mean square error (RMSE) of 0.05, and a coefficient of determination (R2) of 0.84 in predicting heavy-intensity prevalence for S. mansoni; and an MAE of 0.02, an RMSE of 0.04, and an R2 value of 0.81 for S. haematobium. Based on this optimal model, we found that most areas in the surveyed countries have not achieved the target of the WHO road map for 2030. The ML algorithms used in our analysis showed a high overall predictive power in estimating infection intensity for each species, and our methods provided a low-cost, effective approach to evaluating the disease target in Africa set in the WHO road map for 2030.

Publisher

American Society of Tropical Medicine and Hygiene

Reference35 articles.

1. The Global Burden of Disease Study 2010: Interpretation and implications for the neglected tropical diseases;Hotez,2014

2. Spatial and temporal distribution of soil-transmitted helminth infection in sub-Saharan Africa: A systematic review and geostatistical meta-analysis;Karagiannis-Voules,2015

3. Human schistosomiasis;Gryseels,2006

4. Helminth Control in School-Age Children: A Guide for Managers of Control Programmes,2011

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3