Evaluation of the Risk of Laboratory Microbial Contamination during Routine Testing in Automated Clinical Chemistry and Microbiology Laboratories

Author:

Farnsworth Christopher W1,Wallace Meghan A1,Liu Albert1,Gronowski Ann M1,Burnham Carey-Ann D1,Yarbrough Melanie L1

Affiliation:

1. Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO

Abstract

Abstract Background Every clinical specimen is potentially infectious, but data regarding risk for contamination of the laboratory environment during routine testing are scarce. We assessed contamination during routine sample analysis in automated clinical chemistry and microbiology laboratories. Methods A fluorescent marker was applied to specimen container exteriors to assess the impact of gross contamination. Nonpathogenic MS2 virus was added to remnant blood, urine, and ESwab matrices as a biomarker of cross-contamination. Samples were processed and analyzed using Roche Cobas 8100 and ISE, c502, e602, and c702 modules (blood) and BD Kiestra total laboratory automation (blood, urine, ESwabs) over 3 experiments. Fluorescence transfer to laboratory surfaces and personnel was visualized using ultraviolet light. Surfaces were swabbed and assessed for MS2 cross-contamination by RT-PCR. Adherence to standard precautions by laboratory staff was assessed by observation. Results Fluorescence was observed on 49 of 165 (30%) laboratory surfaces and personnel and 21 of 93 (23%) total laboratory automation instruments. Fluorescence transferred most frequently to gloves (31/40), computer accessories (9/18), and specimen loading racks (12/12). None of 123 areas swabbed were positive for MS2. Improper personal protective equipment use occurred at a rate of 0.36 and 0.15 events per staff per hour in the chemistry and microbiology laboratories, respectively. Hand-washing compliance was observed for 61 of 132 (46%) staff members evaluated. Conclusions Analysis of grossly contaminated specimens on automated chemistry and microbiology equipment elicits a low likelihood of instrument contamination. However, handling contaminated specimen containers can result in contamination of environmental laboratory surfaces, representing a source of risk that is heightened by low adherence to appropriate personal protective equipment.

Publisher

Oxford University Press (OUP)

Subject

Biochemistry, medical,Clinical Biochemistry

Reference29 articles.

1. Notes from the field: occupationally acquired HIV infection among health care workers-United States, 1985-2013;Joyce;MMWR Morb Mortal Wkly Rep,2015

2. Laboratory-acquired infections;Singh;Clin Infect Dis,2009

3. Laboratory-associated infections and biosafety;Sewell;Clin Microbiol Rev,1995

4. Frequency of instrument, environment, and laboratory technologist contamination during routine diagnostic testing of infectious specimens;Yarbrough;J Clin Microbiol,2018

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3