Chemistry of the fructosamine assay: D-glucosone is the product of oxidation of Amadori compounds

Author:

Baker J R1,Zyzak D V1,Thorpe S R1,Baynes J W1

Affiliation:

1. Department of Clinical Biochemistry, Green Lane Hospital, Auckland, New Zealand

Abstract

Abstract The chemistry of the fructosamine assay was studied by using the Amadori compound, N alpha-formyl-N epsilon-fructose-lysine (fFL), an analog of glycated lysine residues in protein. Previously (Clin Chem 1993;39:2460-5), we reported that free lysine was formed from fFL at 70% yield during incubation with alkaline nitroblue tetrazolium (NBT) under the conditions routinely used for the fructosamine assay (sodium carbonate buffer, pH 10.35 at 37 degrees C). Here, we show that D-glucosone is the primary carbohydrate oxidation product formed from Amadori compounds in the fructosamine assay. Glucosone, which decomposes under alkaline assay conditions with a half-life of < 30 min, reaches a maximum concentration of approximately 50% of the initial fFL concentration after 10 min of incubation. Like fFL, glucosone reduces NBT to the purple monoformazan dye, but its decomposition is not accelerated by the presence of NBT. The dicarbonyl-trapping reagent, aminoguanidine, inhibits the fructosamine assay by approximately 25% when fFL is the substrate, but by nearly 100% with glucosone as substrate. Studies with serum samples from diabetics and nondiabetics indicate that glucosone formation does not have a significant effect on the clinical usefulness of the fructosamine assay; however, corrections for glucosone formation may be required when the assay is used for estimating the extent of glycation of proteins.

Publisher

Oxford University Press (OUP)

Subject

Biochemistry (medical),Clinical Biochemistry

Cited by 66 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3