Direct Water-Assisted Laser Desorption/Ionization Mass Spectrometry Lipidomic Analysis and Classification of Formalin-Fixed Paraffin-Embedded Sarcoma Tissues without Dewaxing

Author:

Ogrinc Nina1,Caux Pierre-Damien1,Robin Yves-Marie12,Bouchaert Emmanuel13,Fatou Benoit1,Ziskind Michael4,Focsa Cristian4,Bertin Delphine2,Tierny Dominique13,Takats Zoltan1,Salzet Michel15,Fournier Isabelle15

Affiliation:

1. University of Lille, Inserm, CHU Lille, U1192 - Protéomique Réponse Inflammatoire Spectrométrie de Masse—PRISM, Lille, France

2. Unité de Pathologie Morphologique et Moléculaire, Centre Oscar Lambret, Lille, France

3. OCR (Oncovet Clinical Research), Parc Eurasante Lille Metropole, Loos, France

4. University of Lille, CNRS, UMR 8523, PhLAM—Physique des Lasers, Atomes et Molécules, Lille, France

5. Institut Universitaire de France (IUF), Paris, France

Abstract

Abstract Background Formalin-fixed paraffin-embedded (FFPE) tissue has been the gold standard for routine pathology for general and cancer postoperative diagnostics. Despite robust histopathology, immunohistochemistry, and molecular methods, accurate diagnosis remains difficult for certain cases. Overall, the entire process can be time consuming, labor intensive, and does not reach over 90% diagnostic sensitivity and specificity. There is a growing need in onco-pathology for adjunct novel rapid, accurate, reliable, diagnostically sensitive, and specific methods for high-throughput biomolecular identification. Lipids have long been considered only as building blocks of cell membranes or signaling molecules, but have recently been introduced as central players in cancer. Due to sample processing, which limits their detection, lipid analysis directly from unprocessed FFPE tissues has never been reported. Methods We present a proof-of-concept with direct analysis of tissue-lipidomic signatures from FFPE tissues without dewaxing and minimal sample preparation using water-assisted laser desorption ionization mass spectrometry and deep-learning. Results On a cohort of difficult canine and human sarcoma cases, classification for canine sarcoma subtyping was possible with 99.1% accuracy using “5-fold” and 98.5% using “leave-one-patient out,” and 91.2% accuracy for human sarcoma using 5-fold and 73.8% using leave-one-patient out. The developed classification model enabled stratification of blind samples in <5 min and showed >95% probability for discriminating 2 human sarcoma blind samples. Conclusion It is possible to create a rapid diagnostic platform to screen clinical FFPE tissues with minimal sample preparation for molecular pathology.

Funder

Ministère de l’Enseignement Supérieur, de la Recherche et de l’Innovation

Université de Lille and Inserm

Institut Universitaire de France

Région Hauts de France-EU FEDER O’DREAMS

ISite ULNE

Region Haut de France-EU FEDER

Publisher

Oxford University Press (OUP)

Subject

Biochemistry, medical,Clinical Biochemistry

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3