Preoperative metabolic classification of thyroid nodules using mass spectrometry imaging of fine-needle aspiration biopsies

Author:

DeHoog Rachel J.,Zhang JialingORCID,Alore Elizabeth,Lin John Q.ORCID,Yu Wendong,Woody Spencer,Almendariz Christopher,Lin Monica,Engelsman Anton F.,Sidhu Stan B.,Tibshirani Robert,Suliburk James,Eberlin Livia S.ORCID

Abstract

Thyroid neoplasia is common and requires appropriate clinical workup with imaging and fine-needle aspiration (FNA) biopsy to evaluate for cancer. Yet, up to 20% of thyroid nodule FNA biopsies will be indeterminate in diagnosis based on cytological evaluation. Genomic approaches to characterize the malignant potential of nodules showed initial promise but have provided only modest improvement in diagnosis. Here, we describe a method using metabolic analysis by desorption electrospray ionization mass spectrometry (DESI-MS) imaging for direct analysis and diagnosis of follicular cell-derived neoplasia tissues and FNA biopsies. DESI-MS was used to analyze 178 tissue samples to determine the molecular signatures of normal, benign follicular adenoma (FTA), and malignant follicular carcinoma (FTC) and papillary carcinoma (PTC) thyroid tissues. Statistical classifiers, including benign thyroid versus PTC and benign thyroid versus FTC, were built and validated with 114,125 mass spectra, with accuracy assessed in correlation with clinical pathology. Clinical FNA smears were prospectively collected and analyzed using DESI-MS imaging, and the performance of the statistical classifiers was tested with 69 prospectively collected clinical FNA smears. High performance was achieved for both models when predicting on the FNA test set, which included 24 nodules with indeterminate preoperative cytology, with accuracies of 93% and 89%. Our results strongly suggest that DESI-MS imaging is a valuable technology for identification of malignant potential of thyroid nodules.

Funder

Cancer Prevention and Research Institute of Texas

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3