Affiliation:
1. Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing, China
2. Beijing Key Laboratory of Lightweight Multi-functional Composite Materials and Structures, Beijing Institute of Technology, Beijing, China
Abstract
ABSTRACT
In this research, a surface-residual-based nonlocal stress was introduced into nonlocal damage theory to describe the long-range actions among microstructures that were excluded in the definition of Cauchy stress. By using the surface-residual-based nonlocal stress tensor, a thermodynamically consistent nonlocal integral damage model was established to simulate the strain localization behavior for elastic-brittle damage problems. In this model, both the strain and the damage were taken as nonlocal variables in the free energy function, and the integral-type damage constitutive relationships and the evolution equation were derived via thermodynamic laws in order to ensure the self-consistency within the thermodynamic framework. Based on the nonlocal damage formulations using a real nonlocal stress concept, we simulated the strain localization phenomenon in an elastic bar subjected to uniaxial tension. The results showed clear localizing and softening features of strain in the damage zone, and the boundary effects arising from the nonlocal surface residual were illuminated. Furthermore, the strain localization behaviors for different internal characteristic lengths were simulated, through which we found that the characteristic length was comparable to the size of the strain localization zone.
Funder
National Natural Science Foundation of China
Publisher
Oxford University Press (OUP)
Subject
Applied Mathematics,Mechanical Engineering,Condensed Matter Physics
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献