Nonlocal Continuum Damage, Localization Instability and Convergence

Author:

Bazˇant Zdeneˇk P.1,Pijaudier-Cabot Gilles1

Affiliation:

1. Center for Concrete and Geomaterials, Northwestern University, Tech-2410, Evanston, IL 60208

Abstract

A recent nonlocal damage formulation, in which the spatially averaged quantity was the energy dissipated due to strain-softening, is extended to a more general form in which the strain remains local while any variable that controls strain-softening is nonlocal. In contrast to the original imbricate nonlocal model for strain-softening, the stresses which figure in the constitutive relation satisfy the differential equations of equilibrium and boundary conditions of the usual classical form, and no zero-energy spurious modes of instability are encountered. However, the field operator for the present formulation is in general nonsymmetric, although not for the elastic part of response. It is shown that the energy dissipation and damage cannot localize into regions of vanishing volume. The static strain-localization instability, whose solution is reduced to an integral equation, is found to be controlled by the characteristic length of the material introduced in the averaging rule. The calculated static stability limits are close to those obtained in the previous nonlocal studies, as well as to those obtained by the crack band model in which the continuum is treated as local but the minimum size of the strain-softening region (localization region) is prescribed as a localization limiter. Furthermore, the rate of convergence of static finite-element solutions with nonlocal damage is studied and is found to be of a power type, almost quadratric. A smooth weighting function in the averaging operator is found to lead to a much better convergence than unsmooth functions.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 700 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3