Characterizing the breakpoint of stomatal response to vapor pressure deficit in an angiosperm

Author:

Binstock Benjamin R1ORCID,Manandhar Anju1ORCID,McAdam Scott A M1ORCID

Affiliation:

1. Department of Botany and Plant Pathology, Purdue University , West Lafayette, IN 47907 , USA

Abstract

Abstract Vapor pressure difference between the leaf and atmosphere (VPD) is the most important regulator of daytime transpiration, yet the mechanism driving stomatal responses to an increase in VPD in angiosperms remains unresolved. Here, we sought to characterize the mechanism driving stomatal closure at high VPD in an angiosperm species, particularly testing whether abscisic acid (ABA) biosynthesis could explain the observation of a trigger point for stomatal sensitivity to an increase in VPD. We tracked leaf gas exchange and modeled leaf water potential (Ψl) in leaves exposed to a range of step-increases in VPD in the herbaceous species Senecio minimus Poir. (Asteraceae). We found that mild increases in VPD in this species did not induce stomatal closure because modeled Ψl did not decline below a threshold close to turgor loss point (Ψtlp), but when leaves were exposed to a large increase in VPD, stomata closed as modeled Ψl declined below Ψtlp. Leaf ABA levels were higher in leaves exposed to a step-increase in VPD that caused Ψl to transiently decline below Ψtlp and in which stomata closed compared with leaves in which stomata did not close. We conclude that the stomata of S. minimus are insensitive to VPD until Ψl declines to a threshold that triggers the biosynthesis of ABA and that this mechanism might be common to angiosperms.

Funder

National Science Foundation

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3