In situ characterisation of whole‐plant stomatal responses to VPD using leaf optical dendrometry

Author:

Bourbia Ibrahim1ORCID,Lucani Christopher1,Carins‐Murphy Madeline R.1,Gracie Alistair1,Brodribb Timothy J.1

Affiliation:

1. School of Natural Sciences University of Tasmania Hobart Tasmania Australia

Abstract

AbstractVapour pressure deficit (VPD) plays a crucial role in regulating plant carbon and water fluxes due to its influence on stomatal behaviour and transpiration. Yet, characterising stomatal responses of the whole plant to VPD remains challenging due to methodological limitations. Here, we develop a novel method for in situ assessment of whole‐plant stomatal responses (gc) to VPD in the herbaceous plant Tanacetum cinerariifolium. To do this, we examine the relationship between daytime VPD and the corresponding soil–stem water potential gradient (ΔΨ) monitored using the optical dendrometry in well‐hydrated plants under nonlimiting light in both glasshouse and field conditions. In glasshouse plants, ΔΨ increased proportionally with the VPD up to a threshold of 1.53 kPa, beyond which the slope decreased, suggesting a two‐phase response in gc. This pattern aligned with corresponding gravimetrically measured gc behaviour, which also showed a decline when VPD exceeded a similar threshold. This response was then compared with that of field plants monitored using the optical dendrometry technique over a growing season under naturally variable VPD conditions and nonlimiting light and water supply. Field plants exhibited a similar threshold‐type response to VPD but were more sensitive than glasshouse individuals with a VPD threshold of 0.74 kPa. The results showed that whole‐plant gc responses to VPD can be characterised optically in T. cinerariifolium, introducing a new tool for the monitoring and characterisation of stomatal behaviour in situ.

Publisher

Wiley

Subject

Plant Science,Physiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3