SAMBA controls cell division rate during maize development

Author:

Gong Pan12ORCID,Bontinck Michiel12ORCID,Demuynck Kirin12,De Block Jolien12,Gevaert Kris34ORCID,Eeckhout Dominique12ORCID,Persiau Geert12,Aesaert Stijn12ORCID,Coussens Griet12,Van Lijsebettens Mieke12ORCID,Pauwels Laurens12ORCID,De Jaeger Geert12,Inzé Dirk12ORCID,Nelissen Hilde12ORCID

Affiliation:

1. Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium

2. VIB Center for Plant Systems Biology, 9052 Ghent, Belgium

3. Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium

4. VIB Center for Medical Biotechnology, 9000 Ghent, Belgium

Abstract

Abstract SAMBA has been identified as a plant-specific regulator of the anaphase-promoting complex/cyclosome (APC/C) that controls unidirectional cell cycle progression in Arabidopsis (Arabidopsis thaliana), but so far its role has not been studied in monocots. Here, we show the association of SAMBA with the APC/C is conserved in maize (Zea mays). Two samba genome edited mutants showed growth defects, such as reduced internode length, shortened upper leaves with erect leaf architecture, and reduced leaf size due to an altered cell division rate and cell expansion, which aggravated with plant age. The two mutants differed in the severity and developmental onset of the phenotypes, because samba-1 represented a knockout allele, while translation re-initiation in samba-3 resulted in a truncated protein that was still able to interact with the APC/C and regulate its function, albeit with altered APC/C activity and efficiency. Our data are consistent with a dosage-dependent role for SAMBA to control developmental processes for which a change in growth rate is pivotal.

Funder

European Research Council

European Community’s Seventh Framework Programme

ERC

Bijzonder Onderzoeksfonds Methusalem Project

Ghent University

China Scholarship Council

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3