Stress responses and epigenomic instability mark the loss of somatic embryogenesis competence in grapevine

Author:

Dal Santo Silvia1,De Paoli Emanuele2ORCID,Pagliarani Chiara3ORCID,Amato Alessandra1,Celii Mirko2,Boccacci Paolo3ORCID,Zenoni Sara1ORCID,Gambino Giorgio3,Perrone Irene3ORCID

Affiliation:

1. Department of Biotechnology, University of Verona, Verona 37134, Italy

2. Department of Agri-Food, Environmental and Animal Sciences, University of Udine, Udine 33100, Italy

3. Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Torino 10135, Italy

Abstract

Abstract Somatic embryogenesis (SE) represents the most appropriate tool for next-generation breeding methods in woody plants such as grapevine (Vitis vinifera L.). However, in this species, the SE competence is strongly genotype-dependent and the molecular basis of this phenomenon is poorly understood. We explored the genetic and epigenetic basis of SE in grapevine by profiling the transcriptome, epigenome, and small RNAome of undifferentiated, embryogenic, and non-embryogenic callus tissues derived from two genotypes differing in competence for SE, Sangiovese and Cabernet Sauvignon. During the successful formation of embryonic callus, we observed the upregulation of epigenetic-related transcripts and short interfering RNAs in association with DNA hypermethylation at transposable elements in both varieties. Nevertheless, the switch to nonembryonic development matched the incomplete reinforcement of transposon silencing, and the evidence of such effect was more apparent in the recalcitrant Cabernet Sauvignon. Transcriptomic differences between the two genotypes were maximized already at early stage of culture where the recalcitrant variety expressed a broad panel of genes related to stress responses and secondary metabolism. Our data provide a different angle on the SE molecular dynamics that can be exploited to leverage SE as a biotechnological tool for fruit crop breeding.

Funder

Italian Ministry of University and Research

The Epigenomic Plasticity of Grapevine in Genotype per Environment Interactions

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3