The chromatin accessibility landscape of pistils and anthers in rice

Author:

Wang Guanqun12ORCID,Li Xiaozheng1ORCID,Shen Wei2ORCID,Li Man-Wah2ORCID,Huang Mingkun3ORCID,Zhang Jianhua24ORCID,Li Haoxuan24ORCID

Affiliation:

1. College of Life Sciences and Oceanography, Shenzhen University , Shenzhen 518000, China

2. State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong , Shatin 999077, Hong Kong

3. Lushan Botanical Garden Jiangxi Province, Chinese Academy of Sciences , Jiujiang 332900, China

4. Department of Biology, Hong Kong Baptist University , Kowloon 999077, Hong Kong

Abstract

Abstract Transcription activation is tightly associated with the openness of chromatin and allows direct contact between transcriptional regulators and their targeted DNA for gene expression. However, there are limited studies on the annotation of open chromatin regions (OCRs) in rice (Oryza sativa), especially those in reproductive organs. Here, we characterized OCRs in rice pistils and anthers with an assay for transposase-accessible chromatin using sequencing. Despite a large overlap, we found more OCRs in pistils than in anthers. These OCRs were enriched in gene transcription start sites (TSSs) and showed tight associations with gene expression. Transcription factor (TF) binding motifs were enriched at these OCRs as validated by TF chromatin immunoprecipitation followed by sequencing. Pistil-specific OCRs provided potential regulatory networks by binding directly to the targets, indicating that pistil-specific OCRs may be indicators of cis-regulatory elements in regulating pistil development, which are absent in anthers. We also found that open chromatin of pistils and anthers responded differently to low temperature (LT). These data offer a comprehensive overview of OCRs regulating reproductive organ development and LT responses in rice.

Funder

Hong Kong Research Grant Council

National Key Research and Development Program of China

Shenzhen Science and Technology Research Funding

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3