Multi-Omics Analysis Reveals the Transcriptional Regulatory Network of Maize Roots in Response to Nitrogen Availability

Author:

Fang Shuai1,Ji Minggang1,Zhu Tianze1,Wang Yunyun1,Tang Xiao1,Zhu Xinjie1,Yang Zefeng12ORCID,Xu Chenwu12,Wang Houmiao1,Li Pengcheng12ORCID

Affiliation:

1. Jiangsu Key Laboratory of Crop Genetics and Physiology, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College, Yangzhou University, Yangzhou 225009, China

2. Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China

Abstract

Nitrogen (N) availability determines higher plant productivity and yield. However, the molecular mechanisms governing N acquisition and utilization remain largely unknown in maize. In this study, ATAC-seq, RNA-seq, and Ribo-seq analyses were conducted in maize roots under different N supply conditions. A set of differentially expressed genes enriched in N and phenylpropanoid metabolisms at both the transcription and translation levels were highlighted. Interestingly, less than half of low-N responsive genes were shared between transcription and translation. The alteration of translational efficiency (TE) is also an important mechanism by which maize responds to LN. In addition, we identified low-N-induced open chromatin regions (OCRs) and observed an enrichment of transcription factor (TF) binding motifs. Furthermore, we constructed a transcriptional regulatory network for maize roots subjected to low-N. These findings extend our understanding of N availability response and provide new insights for improving N use efficiency (NUE).

Funder

National Natural Science Foundation of China

Key Research and Development Program of Jiangsu Province

Seed Industry Revitalization Project of Jiangsu Province

Innovative Research Team of Universities in Jiangsu Province

High-end Talent Project of Yangzhou University

Priority Academic Program Development of Jiangsu Higher Education Institutions

Qing Lan Project of Jiangsu Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3