A Role for Auxin in Triggering Lamina Outgrowth of Unifacial Leaves

Author:

Nukazuka Akira1ORCID,Yamaguchi Takahiro1,Tsukaya Hirokazu1ORCID

Affiliation:

1. Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan

Abstract

Abstract A common morphological feature of typical angiosperms is the patterning of lateral organs along primary axes of asymmetry—a proximodistal, a mediolateral, and an adaxial–abaxial axis. Angiosperm leaves usually have distinct adaxial–abaxial identity, which is required for the development of a flat shape. By contrast, many unifacial leaves, consisting of only the abaxial side, show a flattened morphology. This implicates a unique mechanism that allows leaf flattening independent of adaxial–abaxial identity. In this study, we report a role for auxin in outgrowth of unifacial leaves. In two closely related unifacial-leaved species of Juncaceae, Juncus prismatocarpus with flattened leaves, and Juncus wallichianus with transversally radialized leaves, the auxin-responsive gene GLYCOSIDE HYDROLASE3 displayed spatially different expression patterns within leaf primordia. Treatment of J. prismatocarpus seedlings with exogenous auxin or auxin transport inhibitors, which disturb endogenous auxin distribution, eliminated leaf flatness, resulting in a transversally radialized morphology. These treatments did not affect the radialized morphology of leaves of J. wallichianus. Moreover, elimination of leaf flatness by these treatments accompanied dysregulated expression of genetic factors needed to specify the leaf central-marginal polarity in J. prismatocarpus. The findings imply that lamina outgrowth of unifacial leaves relies on proper placement of auxin, which might induce initial leaf flattening and subsequently act to specify leaf polarity, promoting further flattening growth of leaves.

Funder

Grant-in-Aid for Creative Scientific Research

Scientific Research on Priority Areas and Scientific Research on Innovative Areas

Grant-in-Aid for Research Activity Start-up

Japan Society for the Promotion of Science

Young Scientists

Ministry of Education, Culture, Sports, Science, and Technology of Japan

Sumitomo Foundation

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3