Molecular mechanisms underlying leaf development, morphological diversification, and beyond

Author:

Nakayama Hokuto1ORCID,Leichty Aaron R2ORCID,Sinha Neelima R2ORCID

Affiliation:

1. Graduate School of Science, Department of Biological Sciences, The University of Tokyo , Tokyo 113-0033, Japan

2. Department of Plant Biology, University of California Davis , Davis, California 95616, USA

Abstract

Abstrvact The basic mechanisms of leaf development have been revealed through a combination of genetics and intense analyses in select model species. The genetic basis for diversity in leaf morphology seen in nature is also being unraveled through recent advances in techniques and technologies related to genomics and transcriptomics, which have had a major impact on these comparative studies. However, this has led to the emergence of new unresolved questions about the mechanisms that generate the diversity of leaf form. Here, we provide a review of the current knowledge of the fundamental molecular genetic mechanisms underlying leaf development with an emphasis on natural variation and conserved gene regulatory networks involved in leaf development. Beyond that, we discuss open questions/enigmas in the area of leaf development, how recent technologies can best be deployed to generate a unified understanding of leaf diversity and its evolution, and what untapped fields lie ahead.

Funder

United States Department of Agriculture NIFA

National Science Foundation

NSF Postdoctoral Research Fellowship in Biology

Katherine Esau Postdoctoral Fellowship

Japan Society for the Promotion of Science KAKENHI

Grant-in-Aid for Scientific Research on Innovative Areas

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Plant Science

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3