Uncoupling differential water usage from drought resistance in a dwarf Arabidopsis mutant

Author:

Ginzburg Daniel N1ORCID,Bossi Flavia1ORCID,Rhee Seung Y1ORCID

Affiliation:

1. Department of Plant Biology, Carnegie Institution for Science , Stanford, CA, USA

Abstract

Abstract Understanding the molecular and physiological mechanisms of how plants respond to drought is paramount to breeding more drought-resistant crops. Certain mutations or allelic variations result in plants with altered water-use requirements. To correctly identify genetic differences which confer a drought phenotype, plants with different genotypes must be subjected to equal levels of drought stress. Many reports of advantageous mutations conferring drought resistance do not control for soil water content (SWC) variations across genotypes and may therefore need to be re-examined. Here, we reassessed the drought phenotype of the Arabidopsis (Arabidopsis thaliana) dwarf mutant, chiquita1-1 (chiq1-1, also called constitutively stressed 1 (cost1)), by growing mutant seedlings together with the wild-type to ensure uniform soil water availability across genotypes. Our results demonstrate that the dwarf phenotype conferred by loss of CHIQ1 function results in constitutively lower water usage per plant, but not increased drought resistance. Our study provides an easily reproducible, low-cost method to measure and control for SWC and to compare drought-resistant genotypes more accurately.

Funder

National Science Foundation

Department of Energy

Office of Science, Office of Biological and Environmental Research, Genomic Science Program

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3